Lógica matemática

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
La lógica matemática es una parte de la lógica y las matemáticas que consiste en el estudio matemático de la lógica y en la aplicación de este estudio a otras áreas de las matemáticas. La lógica matemática tiene estrechas conexiones con las ciencias de la computación y la lógica filosófica.
La lógica matemática estudia los sistemas formales en relación con el modo en el que codifican o definen nociones intuitivas de objetos matemáticos como conjuntos, números, demostraciones y algoritmos, utilizando un lenguaje formal.
La lógica matemática suele dividirse en cuatro subcampos: teoría de modelos, teoría de la demostración, teoría de conjuntos y teoría de la recursión. La investigación en lógica matemática ha jugado un papel fundamental en el estudio de los fundamentos de las matemáticas. Actualmente se usan indiferentemente como sinónimos las expresiones: lógica simbólica (o logística), lógica matemática, lógica teorética y lógica formal.[1]
La lógica matemática no es la «lógica de las matemáticas» sino la «matemática de la lógica». Incluye aquellas partes de la lógica que pueden ser modeladas y estudiadas matemáticamente.

tomado de:  http://es.wikipedia.org/wiki/L%C3%B3gica_matem%C3%A1tica









Introducción
El nacimiento de la lógica propiamente dicho está directamente relacionado con el nacimiento intelectual del ser humano. La lógica emerge como mecanismo espontáneo en el enfrentamiento del hombre con la naturaleza, para comprenderla y aprovecharla. Poncairé destaca cinco etapas o revoluciones en ese proceso que se presentan entre dos grandes tópicos: del rigor y la formalidad, a la creatividad y el caos. Las etapas se identifican como: Revolución Matemática, Revolución Científica, Revolución Formal y Revolución Digital además de la próxima y prevista Revolución Lógica.



Los primeros principios formales de las matemáticas se desarrollan en Grecia. Platón, Aristóteles y Euclides proponen las primeras ideas hacia la lógica: Platón propone ideas o abstracciones. Aristóteles resuelve el razonamiento deductivo y sistematizado. Euclides es el autor que establece el método axiomático.




El trabajo de Aristóteles contiene el primer tratado sistemático de las leyes de pensamiento para la adquisición de conocimiento. Representan el primer intento serio que funda la lógica como ciencia.


Fueron George Boole y Augustus De Morgan, a mediados del siglo XIX, quienes primero presentaron un sistema matemático para modelar operaciones lógicas. La lógica tradicional aristotélica fue reformada y completada, obteniendo un instrumento apropiado para investigar sobre los fundamentos de la matemática





No hay comentarios:

Publicar un comentario